Changes
On June 22, 2024 at 10:22:14 PM +0800, Albert Yang:
-
Updated description of Brain FDG-PET/MR Image Database from
Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is currently one of the powerful tools for the clinical diagnosis of dementia (AD). Meanwhile, MR imaging, being non-radioactive and having high contrast resolution, is highly accessible in clinical settings. Therefore, this dataset intends to use FDG-PET images as the Ground Truth for evaluating AD, for the development of predicting AD patients using MR images. This dataset includes an AD group and a control group (Healthy Group). The determination of the image diagnosis group is made by neurology specialists based on comprehensive judgment using clinically relevant information. Each set of data contains one set of MRI T1 images and one set of FDG-PET images. The image format is DICOM, and all images have been anonymized. To obtain the clinical information and related documentation, please contact the administrator.
toFluorodeoxyglucose Positron Emission Tomography (FDG-PET) is currently one of the powerful tools for the clinical diagnosis of dementia such as Alzheimer's Disease (AD). Meanwhile, MR imaging, being non-radioactive and having high contrast resolution, is highly accessible in clinical settings. Therefore, this dataset intends to use FDG-PET images as the Ground Truth for evaluating AD, for the development of predicting AD patients using MR images. This dataset includes an AD group and a control group (Healthy Group). The determination of the image diagnosis group is made by neurology specialists based on comprehensive judgment using clinically relevant information. Each set of data contains one set of MRI T1 images and one set of FDG-PET images. The image format is DICOM, and all images have been anonymized. To obtain the clinical information and related documentation, please contact the administrator.
f | 1 | { | f | 1 | { |
2 | "author": "Jung-ling Fuh, MD", | 2 | "author": "Jung-ling Fuh, MD", | ||
3 | "author_email": "wkni2022@gmail.com", | 3 | "author_email": "wkni2022@gmail.com", | ||
4 | "creator_user_id": "98cd7fde-42e2-499a-9c56-9579d1b21de4", | 4 | "creator_user_id": "98cd7fde-42e2-499a-9c56-9579d1b21de4", | ||
5 | "extras": [], | 5 | "extras": [], | ||
n | 6 | "groups": [], | n | 6 | "groups": [ |
7 | { | ||||
8 | "description": "", | ||||
9 | "display_name": "Brain Image", | ||||
10 | "id": "9765d9ee-aa92-4df1-a4e8-449093b96e9d", | ||||
11 | "image_display_url": | ||||
12 | ps://data.dmc.nycu.edu.tw/uploads/group/2022-05-20-061942.864108.png", | ||||
13 | "name": "brain-image", | ||||
14 | "title": "Brain Image" | ||||
15 | }, | ||||
16 | { | ||||
17 | "description": "", | ||||
18 | "display_name": "Medical Image", | ||||
19 | "id": "43994d1e-5618-4387-926c-06a6b90e1bff", | ||||
20 | "image_display_url": | ||||
21 | ps://data.dmc.nycu.edu.tw/uploads/group/2022-05-20-061643.512798.png", | ||||
22 | "name": "medical-image", | ||||
23 | "title": "Medical Image" | ||||
24 | } | ||||
25 | ], | ||||
7 | "id": "4b870627-641d-4f07-8a01-42f98181548e", | 26 | "id": "4b870627-641d-4f07-8a01-42f98181548e", | ||
8 | "isopen": true, | 27 | "isopen": true, | ||
9 | "license_id": "cc-by", | 28 | "license_id": "cc-by", | ||
10 | "license_title": "Creative Commons Attribution", | 29 | "license_title": "Creative Commons Attribution", | ||
11 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 30 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
12 | "maintainer": "nena", | 31 | "maintainer": "nena", | ||
13 | "maintainer_email": "wkni2022@gmail.com", | 32 | "maintainer_email": "wkni2022@gmail.com", | ||
14 | "metadata_created": "2022-07-20T08:18:25.393908", | 33 | "metadata_created": "2022-07-20T08:18:25.393908", | ||
n | 15 | "metadata_modified": "2023-12-12T07:19:06.205002", | n | 34 | "metadata_modified": "2024-06-22T14:22:14.026156", |
16 | "name": "petmri", | 35 | "name": "petmri", | ||
17 | "notes": "Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) | 36 | "notes": "Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) | ||
18 | is currently one of the powerful tools for the clinical diagnosis of | 37 | is currently one of the powerful tools for the clinical diagnosis of | ||
n | 19 | dementia (AD). Meanwhile, MR imaging, being non-radioactive and having | n | 38 | dementia such as Alzheimer's Disease (AD). Meanwhile, MR imaging, |
20 | high contrast resolution, is highly accessible in clinical settings. | 39 | being non-radioactive and having high contrast resolution, is highly | ||
21 | Therefore, this dataset intends to use FDG-PET images as the Ground | 40 | accessible in clinical settings. Therefore, this dataset intends to | ||
22 | Truth for evaluating AD, for the development of predicting AD patients | 41 | use FDG-PET images as the Ground Truth for evaluating AD, for the | ||
23 | using MR images.\r\n\r\nThis dataset includes an AD group and a | 42 | development of predicting AD patients using MR images.\r\n\r\nThis | ||
24 | control group (Healthy Group). The determination of the image | 43 | dataset includes an AD group and a control group (Healthy Group). The | ||
25 | diagnosis group is made by neurology specialists based on | 44 | determination of the image diagnosis group is made by neurology | ||
26 | comprehensive judgment using clinically relevant information.\r\nEach | 45 | specialists based on comprehensive judgment using clinically relevant | ||
27 | set of data contains one set of MRI T1 images and one set of FDG-PET | 46 | information.\r\nEach set of data contains one set of MRI T1 images and | ||
28 | images. The image format is DICOM, and all images have been | 47 | one set of FDG-PET images. The image format is DICOM, and all images | ||
29 | anonymized.\r\n\r\nTo obtain the clinical information and related | 48 | have been anonymized.\r\n\r\nTo obtain the clinical information and | ||
30 | documentation, please contact the administrator.", | 49 | related documentation, please contact the administrator.", | ||
31 | "num_resources": 3, | 50 | "num_resources": 3, | ||
32 | "num_tags": 3, | 51 | "num_tags": 3, | ||
33 | "organization": { | 52 | "organization": { | ||
34 | "approval_status": "approved", | 53 | "approval_status": "approved", | ||
35 | "created": "2022-05-20T15:43:19.080718", | 54 | "created": "2022-05-20T15:43:19.080718", | ||
t | 36 | "description": "", | t | 55 | "description": "The Taipei Veterans General Hospital (Chinese: |
56 | \u53f0\u5317\u69ae\u6c11\u7e3d\u91ab\u9662) is a premier national | ||||
57 | medical center and a teaching hospital in Taiwan, offering tertiary | ||||
58 | patient care, undergraduate medical education programs, and residency | ||||
59 | programs. Established in 1958, it operates under the administration of | ||||
60 | the Veterans Affairs Council. Located in the Beitou District of | ||||
61 | Taipei, the hospital primarily serves patients from the metropolitan | ||||
62 | Taipei area and throughout all regions of Taiwan.", | ||||
37 | "id": "25188a0c-7f13-4562-a5e2-042df726de3c", | 63 | "id": "25188a0c-7f13-4562-a5e2-042df726de3c", | ||
38 | "image_url": "2022-05-20-074319.065617vghtpelogo.png", | 64 | "image_url": "2022-05-20-074319.065617vghtpelogo.png", | ||
39 | "is_organization": true, | 65 | "is_organization": true, | ||
40 | "name": "taipei-veterans-general-hospital", | 66 | "name": "taipei-veterans-general-hospital", | ||
41 | "state": "active", | 67 | "state": "active", | ||
42 | "title": "Taipei Veterans General Hospital", | 68 | "title": "Taipei Veterans General Hospital", | ||
43 | "type": "organization" | 69 | "type": "organization" | ||
44 | }, | 70 | }, | ||
45 | "owner_org": "25188a0c-7f13-4562-a5e2-042df726de3c", | 71 | "owner_org": "25188a0c-7f13-4562-a5e2-042df726de3c", | ||
46 | "private": false, | 72 | "private": false, | ||
47 | "relationships_as_object": [], | 73 | "relationships_as_object": [], | ||
48 | "relationships_as_subject": [], | 74 | "relationships_as_subject": [], | ||
49 | "resources": [ | 75 | "resources": [ | ||
50 | { | 76 | { | ||
51 | "cache_last_updated": null, | 77 | "cache_last_updated": null, | ||
52 | "cache_url": null, | 78 | "cache_url": null, | ||
53 | "created": "2022-07-20T08:19:43.818222", | 79 | "created": "2022-07-20T08:19:43.818222", | ||
54 | "datastore_active": false, | 80 | "datastore_active": false, | ||
55 | "description": | 81 | "description": | ||
56 | c7\u6599\u96c6\u4e4b\u5f71\u50cf\u57fa\u672c\u76f8\u95dc\u8aaa\u660e", | 82 | c7\u6599\u96c6\u4e4b\u5f71\u50cf\u57fa\u672c\u76f8\u95dc\u8aaa\u660e", | ||
57 | "format": "PDF", | 83 | "format": "PDF", | ||
58 | "hash": "", | 84 | "hash": "", | ||
59 | "id": "5f07cb80-f342-4786-ae62-ac5fb158b81a", | 85 | "id": "5f07cb80-f342-4786-ae62-ac5fb158b81a", | ||
60 | "last_modified": "2022-07-20T08:19:43.774908", | 86 | "last_modified": "2022-07-20T08:19:43.774908", | ||
61 | "metadata_modified": "2022-07-20T08:19:44.477434", | 87 | "metadata_modified": "2022-07-20T08:19:44.477434", | ||
62 | "mimetype": "application/pdf", | 88 | "mimetype": "application/pdf", | ||
63 | "mimetype_inner": null, | 89 | "mimetype_inner": null, | ||
64 | "name": "\u8cc7\u6599\u96c6\u8aaa\u660e\u6587\u4ef6_v1.2.pdf", | 90 | "name": "\u8cc7\u6599\u96c6\u8aaa\u660e\u6587\u4ef6_v1.2.pdf", | ||
65 | "package_id": "4b870627-641d-4f07-8a01-42f98181548e", | 91 | "package_id": "4b870627-641d-4f07-8a01-42f98181548e", | ||
66 | "position": 0, | 92 | "position": 0, | ||
67 | "resource_type": null, | 93 | "resource_type": null, | ||
68 | "size": 486520, | 94 | "size": 486520, | ||
69 | "state": "active", | 95 | "state": "active", | ||
70 | "url": | 96 | "url": | ||
71 | 48e/resource/5f07cb80-f342-4786-ae62-ac5fb158b81a/download/_v1.2.pdf", | 97 | 48e/resource/5f07cb80-f342-4786-ae62-ac5fb158b81a/download/_v1.2.pdf", | ||
72 | "url_type": "upload" | 98 | "url_type": "upload" | ||
73 | }, | 99 | }, | ||
74 | { | 100 | { | ||
75 | "cache_last_updated": null, | 101 | "cache_last_updated": null, | ||
76 | "cache_url": null, | 102 | "cache_url": null, | ||
77 | "created": "2023-12-05T08:11:11.155872", | 103 | "created": "2023-12-05T08:11:11.155872", | ||
78 | "datastore_active": false, | 104 | "datastore_active": false, | ||
79 | "description": | 105 | "description": | ||
80 | 69ae\u7e3d\u8166\u90e8FDG-PET/MR\u5f71\u50cf\u8cc7\u6599\u5eab_Healthy | 106 | 69ae\u7e3d\u8166\u90e8FDG-PET/MR\u5f71\u50cf\u8cc7\u6599\u5eab_Healthy | ||
81 | Group", | 107 | Group", | ||
82 | "format": "ZIP", | 108 | "format": "ZIP", | ||
83 | "hash": "", | 109 | "hash": "", | ||
84 | "id": "f3b8dde4-dfdd-4546-80f7-916425eb97b7", | 110 | "id": "f3b8dde4-dfdd-4546-80f7-916425eb97b7", | ||
85 | "last_modified": "2023-12-05T08:11:11.081649", | 111 | "last_modified": "2023-12-05T08:11:11.081649", | ||
86 | "metadata_modified": "2023-12-05T08:20:42.047428", | 112 | "metadata_modified": "2023-12-05T08:20:42.047428", | ||
87 | "mimetype": "application/zip", | 113 | "mimetype": "application/zip", | ||
88 | "mimetype_inner": null, | 114 | "mimetype_inner": null, | ||
89 | "name": "PETMR_HC.zip", | 115 | "name": "PETMR_HC.zip", | ||
90 | "package_id": "4b870627-641d-4f07-8a01-42f98181548e", | 116 | "package_id": "4b870627-641d-4f07-8a01-42f98181548e", | ||
91 | "position": 1, | 117 | "position": 1, | ||
92 | "resource_type": null, | 118 | "resource_type": null, | ||
93 | "size": 773663200, | 119 | "size": 773663200, | ||
94 | "state": "active", | 120 | "state": "active", | ||
95 | "url": | 121 | "url": | ||
96 | /resource/f3b8dde4-dfdd-4546-80f7-916425eb97b7/download/petmr_hc.zip", | 122 | /resource/f3b8dde4-dfdd-4546-80f7-916425eb97b7/download/petmr_hc.zip", | ||
97 | "url_type": "upload" | 123 | "url_type": "upload" | ||
98 | }, | 124 | }, | ||
99 | { | 125 | { | ||
100 | "cache_last_updated": null, | 126 | "cache_last_updated": null, | ||
101 | "cache_url": null, | 127 | "cache_url": null, | ||
102 | "created": "2023-12-05T08:20:42.060222", | 128 | "created": "2023-12-05T08:20:42.060222", | ||
103 | "datastore_active": false, | 129 | "datastore_active": false, | ||
104 | "description": | 130 | "description": | ||
105 | 317\u69ae\u7e3d\u8166\u90e8FDG-PET/MR\u5f71\u50cf\u8cc7\u6599\u5eab_AD | 131 | 317\u69ae\u7e3d\u8166\u90e8FDG-PET/MR\u5f71\u50cf\u8cc7\u6599\u5eab_AD | ||
106 | Group", | 132 | Group", | ||
107 | "format": "ZIP", | 133 | "format": "ZIP", | ||
108 | "hash": "", | 134 | "hash": "", | ||
109 | "id": "0ed91ae2-00a3-4b4c-b012-e70c860d4989", | 135 | "id": "0ed91ae2-00a3-4b4c-b012-e70c860d4989", | ||
110 | "last_modified": "2023-12-05T08:20:42.028193", | 136 | "last_modified": "2023-12-05T08:20:42.028193", | ||
111 | "metadata_modified": "2023-12-05T08:20:42.047650", | 137 | "metadata_modified": "2023-12-05T08:20:42.047650", | ||
112 | "mimetype": "application/zip", | 138 | "mimetype": "application/zip", | ||
113 | "mimetype_inner": null, | 139 | "mimetype_inner": null, | ||
114 | "name": "PETMR_AD.zip", | 140 | "name": "PETMR_AD.zip", | ||
115 | "package_id": "4b870627-641d-4f07-8a01-42f98181548e", | 141 | "package_id": "4b870627-641d-4f07-8a01-42f98181548e", | ||
116 | "position": 2, | 142 | "position": 2, | ||
117 | "resource_type": null, | 143 | "resource_type": null, | ||
118 | "size": 767201426, | 144 | "size": 767201426, | ||
119 | "state": "active", | 145 | "state": "active", | ||
120 | "url": | 146 | "url": | ||
121 | /resource/0ed91ae2-00a3-4b4c-b012-e70c860d4989/download/petmr_ad.zip", | 147 | /resource/0ed91ae2-00a3-4b4c-b012-e70c860d4989/download/petmr_ad.zip", | ||
122 | "url_type": "upload" | 148 | "url_type": "upload" | ||
123 | } | 149 | } | ||
124 | ], | 150 | ], | ||
125 | "state": "active", | 151 | "state": "active", | ||
126 | "tags": [ | 152 | "tags": [ | ||
127 | { | 153 | { | ||
128 | "display_name": "FDG-PET", | 154 | "display_name": "FDG-PET", | ||
129 | "id": "cb28ea61-db49-4fa3-9419-e6db3dd2b836", | 155 | "id": "cb28ea61-db49-4fa3-9419-e6db3dd2b836", | ||
130 | "name": "FDG-PET", | 156 | "name": "FDG-PET", | ||
131 | "state": "active", | 157 | "state": "active", | ||
132 | "vocabulary_id": null | 158 | "vocabulary_id": null | ||
133 | }, | 159 | }, | ||
134 | { | 160 | { | ||
135 | "display_name": "PET_MR", | 161 | "display_name": "PET_MR", | ||
136 | "id": "6157f878-534c-4078-bc81-3a70e98fa4d4", | 162 | "id": "6157f878-534c-4078-bc81-3a70e98fa4d4", | ||
137 | "name": "PET_MR", | 163 | "name": "PET_MR", | ||
138 | "state": "active", | 164 | "state": "active", | ||
139 | "vocabulary_id": null | 165 | "vocabulary_id": null | ||
140 | }, | 166 | }, | ||
141 | { | 167 | { | ||
142 | "display_name": "T1-Weighted MR image", | 168 | "display_name": "T1-Weighted MR image", | ||
143 | "id": "740131d3-caa6-419d-8c2c-bedfb3475d4c", | 169 | "id": "740131d3-caa6-419d-8c2c-bedfb3475d4c", | ||
144 | "name": "T1-Weighted MR image", | 170 | "name": "T1-Weighted MR image", | ||
145 | "state": "active", | 171 | "state": "active", | ||
146 | "vocabulary_id": null | 172 | "vocabulary_id": null | ||
147 | } | 173 | } | ||
148 | ], | 174 | ], | ||
149 | "title": "Brain FDG-PET/MR Image Database", | 175 | "title": "Brain FDG-PET/MR Image Database", | ||
150 | "type": "dataset", | 176 | "type": "dataset", | ||
151 | "url": "", | 177 | "url": "", | ||
152 | "version": "" | 178 | "version": "" | ||
153 | } | 179 | } |