Changes
On December 12, 2023 at 3:06:40 PM +0800, Albert Yang:
-
Updated description of Brain CT Hemorrhage Public Dataset from
## Overview This dataset, featured in the RSNA Intracranial Hemorrhage Detection challenge on Kaggle, offers a rich collection of brain CT images. It is meticulously categorized into seven distinct classes: 'any', 'epidural', 'intraparenchymal', 'intraventricular', 'none', 'subarachnoid', and 'subdural'. Each category is represented by 1000 DICOM files, providing a balanced and extensive dataset for analysis and machine learning applications. ## Dataset Details __Categories__: Any, Epidural, Intraparenchymal, Intraventricular, None, Subarachnoid, Subdural __Files__: 1000 DICOM files per category __Total Images__: 7000 DICOM files __Source__: RSNA Intracranial Hemorrhage Detection Challenge on Kaggle The source of the dataset (from Kaggle): https://www.kaggle.com/competitions/rsna-intracranial-hemorrhage-detection/data ##Use Case## This dataset is ideal for researchers and practitioners working on medical imaging, particularly in the areas of brain health, neural disorders, and automated diagnosis systems. It provides a substantial resource for developing and testing algorithms in the detection of various types of intracranial hemorrhages.
to## Overview This dataset, featured in the RSNA Intracranial Hemorrhage Detection challenge on Kaggle, offers a rich collection of brain CT images. It is meticulously categorized into seven distinct classes: 'any', 'epidural', 'intraparenchymal', 'intraventricular', 'none', 'subarachnoid', and 'subdural'. Each category is represented by 1000 DICOM files, providing a balanced and extensive dataset for analysis and machine learning applications. ## Dataset Details __Categories__: Any, Epidural, Intraparenchymal, Intraventricular, None, Subarachnoid, Subdural __Files__: 1000 DICOM files per category __Total Images__: 7000 DICOM files __Source__: RSNA Intracranial Hemorrhage Detection Challenge on Kaggle The source of the dataset (from Kaggle): https://www.kaggle.com/competitions/rsna-intracranial-hemorrhage-detection/data ##Use Case## This dataset is ideal for researchers and practitioners working on medical imaging, particularly in the areas of brain health, neural disorders, and automated diagnosis systems. It provides a substantial resource for developing and testing algorithms in the detection of various types of intracranial hemorrhages.
f | 1 | { | f | 1 | { |
2 | "author": "", | 2 | "author": "", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "8fdeea55-478f-4124-8ff8-8ba9c07bd668", | 4 | "creator_user_id": "8fdeea55-478f-4124-8ff8-8ba9c07bd668", | ||
5 | "extras": [], | 5 | "extras": [], | ||
6 | "groups": [], | 6 | "groups": [], | ||
7 | "id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 7 | "id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
8 | "isopen": true, | 8 | "isopen": true, | ||
9 | "license_id": "cc-by", | 9 | "license_id": "cc-by", | ||
10 | "license_title": "Creative Commons Attribution", | 10 | "license_title": "Creative Commons Attribution", | ||
11 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 11 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
12 | "maintainer": "Data tester", | 12 | "maintainer": "Data tester", | ||
13 | "maintainer_email": "medpacslin@gmail.com", | 13 | "maintainer_email": "medpacslin@gmail.com", | ||
14 | "metadata_created": "2023-03-28T02:39:48.272191", | 14 | "metadata_created": "2023-03-28T02:39:48.272191", | ||
n | 15 | "metadata_modified": "2023-12-12T07:06:14.668555", | n | 15 | "metadata_modified": "2023-12-12T07:06:40.187626", |
16 | "name": "ihd-ct", | 16 | "name": "ihd-ct", | ||
17 | "notes": "## Overview\r\n\r\nThis dataset, featured in the RSNA | 17 | "notes": "## Overview\r\n\r\nThis dataset, featured in the RSNA | ||
18 | Intracranial Hemorrhage Detection challenge on Kaggle, offers a rich | 18 | Intracranial Hemorrhage Detection challenge on Kaggle, offers a rich | ||
19 | collection of brain CT images. It is meticulously categorized into | 19 | collection of brain CT images. It is meticulously categorized into | ||
20 | seven distinct classes: 'any', 'epidural', 'intraparenchymal', | 20 | seven distinct classes: 'any', 'epidural', 'intraparenchymal', | ||
21 | 'intraventricular', 'none', 'subarachnoid', and 'subdural'. Each | 21 | 'intraventricular', 'none', 'subarachnoid', and 'subdural'. Each | ||
22 | category is represented by 1000 DICOM files, providing a balanced and | 22 | category is represented by 1000 DICOM files, providing a balanced and | ||
23 | extensive dataset for analysis and machine learning | 23 | extensive dataset for analysis and machine learning | ||
24 | applications.\r\n\r\n## Dataset Details\r\n\r\n__Categories__: Any, | 24 | applications.\r\n\r\n## Dataset Details\r\n\r\n__Categories__: Any, | ||
25 | Epidural, Intraparenchymal, Intraventricular, None, Subarachnoid, | 25 | Epidural, Intraparenchymal, Intraventricular, None, Subarachnoid, | ||
t | 26 | Subdural\r\n__Files__: 1000 DICOM files per category\r\n__Total | t | 26 | Subdural\r\n\r\n__Files__: 1000 DICOM files per category\r\n__Total |
27 | Images__: 7000 DICOM files\r\n__Source__: RSNA Intracranial Hemorrhage | 27 | Images__: 7000 DICOM files\r\n__Source__: RSNA Intracranial Hemorrhage | ||
28 | Detection Challenge on Kaggle\r\nThe source of the dataset (from | 28 | Detection Challenge on Kaggle\r\nThe source of the dataset (from | ||
29 | Kaggle): | 29 | Kaggle): | ||
30 | /competitions/rsna-intracranial-hemorrhage-detection/data\r\n\r\n##Use | 30 | /competitions/rsna-intracranial-hemorrhage-detection/data\r\n\r\n##Use | ||
31 | Case##\r\n\r\nThis dataset is ideal for researchers and practitioners | 31 | Case##\r\n\r\nThis dataset is ideal for researchers and practitioners | ||
32 | working on medical imaging, particularly in the areas of brain health, | 32 | working on medical imaging, particularly in the areas of brain health, | ||
33 | neural disorders, and automated diagnosis systems. It provides a | 33 | neural disorders, and automated diagnosis systems. It provides a | ||
34 | substantial resource for developing and testing algorithms in the | 34 | substantial resource for developing and testing algorithms in the | ||
35 | detection of various types of intracranial hemorrhages.", | 35 | detection of various types of intracranial hemorrhages.", | ||
36 | "num_resources": 9, | 36 | "num_resources": 9, | ||
37 | "num_tags": 4, | 37 | "num_tags": 4, | ||
38 | "organization": { | 38 | "organization": { | ||
39 | "approval_status": "approved", | 39 | "approval_status": "approved", | ||
40 | "created": "2022-05-20T11:47:43.716226", | 40 | "created": "2022-05-20T11:47:43.716226", | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "id": "c487e550-da81-44b7-98a1-0145f5eeafca", | 42 | "id": "c487e550-da81-44b7-98a1-0145f5eeafca", | ||
43 | "image_url": "2023-06-20-035407.721257bluenycuadj.png", | 43 | "image_url": "2023-06-20-035407.721257bluenycuadj.png", | ||
44 | "is_organization": true, | 44 | "is_organization": true, | ||
45 | "name": "national-yang-ming-chiao-tung-university", | 45 | "name": "national-yang-ming-chiao-tung-university", | ||
46 | "state": "active", | 46 | "state": "active", | ||
47 | "title": "National Yang Ming Chiao Tung University", | 47 | "title": "National Yang Ming Chiao Tung University", | ||
48 | "type": "organization" | 48 | "type": "organization" | ||
49 | }, | 49 | }, | ||
50 | "owner_org": "c487e550-da81-44b7-98a1-0145f5eeafca", | 50 | "owner_org": "c487e550-da81-44b7-98a1-0145f5eeafca", | ||
51 | "private": false, | 51 | "private": false, | ||
52 | "relationships_as_object": [], | 52 | "relationships_as_object": [], | ||
53 | "relationships_as_subject": [], | 53 | "relationships_as_subject": [], | ||
54 | "resources": [ | 54 | "resources": [ | ||
55 | { | 55 | { | ||
56 | "cache_last_updated": null, | 56 | "cache_last_updated": null, | ||
57 | "cache_url": null, | 57 | "cache_url": null, | ||
58 | "created": "2023-03-28T02:43:27.063447", | 58 | "created": "2023-03-28T02:43:27.063447", | ||
59 | "datastore_active": false, | 59 | "datastore_active": false, | ||
60 | "description": "20230330_12:08 updated from NYCU raccoon", | 60 | "description": "20230330_12:08 updated from NYCU raccoon", | ||
61 | "format": "CSV", | 61 | "format": "CSV", | ||
62 | "hash": "", | 62 | "hash": "", | ||
63 | "id": "f50129ca-780b-4bc6-bd5d-61e4798ebb1a", | 63 | "id": "f50129ca-780b-4bc6-bd5d-61e4798ebb1a", | ||
64 | "last_modified": "2023-03-30T04:08:23.514387", | 64 | "last_modified": "2023-03-30T04:08:23.514387", | ||
65 | "metadata_modified": "2023-04-19T03:30:24.634964", | 65 | "metadata_modified": "2023-04-19T03:30:24.634964", | ||
66 | "mimetype": "text/csv", | 66 | "mimetype": "text/csv", | ||
67 | "mimetype_inner": null, | 67 | "mimetype_inner": null, | ||
68 | "name": "IHD_NYCU.csv", | 68 | "name": "IHD_NYCU.csv", | ||
69 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 69 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
70 | "position": 0, | 70 | "position": 0, | ||
71 | "resource_type": null, | 71 | "resource_type": null, | ||
72 | "size": 2132143, | 72 | "size": 2132143, | ||
73 | "state": "active", | 73 | "state": "active", | ||
74 | "url": | 74 | "url": | ||
75 | ource/f50129ca-780b-4bc6-bd5d-61e4798ebb1a/download/ihd_v6_rocks.csv", | 75 | ource/f50129ca-780b-4bc6-bd5d-61e4798ebb1a/download/ihd_v6_rocks.csv", | ||
76 | "url_type": "upload" | 76 | "url_type": "upload" | ||
77 | }, | 77 | }, | ||
78 | { | 78 | { | ||
79 | "cache_last_updated": null, | 79 | "cache_last_updated": null, | ||
80 | "cache_url": null, | 80 | "cache_url": null, | ||
81 | "created": "2023-03-31T03:54:20.697658", | 81 | "created": "2023-03-31T03:54:20.697658", | ||
82 | "datastore_active": false, | 82 | "datastore_active": false, | ||
83 | "description": "20230331_11:55 updated from NTUNHS raccoon", | 83 | "description": "20230331_11:55 updated from NTUNHS raccoon", | ||
84 | "format": "CSV", | 84 | "format": "CSV", | ||
85 | "hash": "", | 85 | "hash": "", | ||
86 | "id": "138db27e-1f75-4cf2-b071-c64969a08cb5", | 86 | "id": "138db27e-1f75-4cf2-b071-c64969a08cb5", | ||
87 | "last_modified": "2023-03-31T03:54:20.668371", | 87 | "last_modified": "2023-03-31T03:54:20.668371", | ||
88 | "metadata_modified": "2023-04-08T15:41:46.236088", | 88 | "metadata_modified": "2023-04-08T15:41:46.236088", | ||
89 | "mimetype": "text/csv", | 89 | "mimetype": "text/csv", | ||
90 | "mimetype_inner": null, | 90 | "mimetype_inner": null, | ||
91 | "name": "IHD_ntunhs.csv", | 91 | "name": "IHD_ntunhs.csv", | ||
92 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 92 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
93 | "position": 1, | 93 | "position": 1, | ||
94 | "resource_type": null, | 94 | "resource_type": null, | ||
95 | "size": 2027123, | 95 | "size": 2027123, | ||
96 | "state": "active", | 96 | "state": "active", | ||
97 | "url": | 97 | "url": | ||
98 | c/resource/138db27e-1f75-4cf2-b071-c64969a08cb5/download/ihd_825.csv", | 98 | c/resource/138db27e-1f75-4cf2-b071-c64969a08cb5/download/ihd_825.csv", | ||
99 | "url_type": "upload" | 99 | "url_type": "upload" | ||
100 | }, | 100 | }, | ||
101 | { | 101 | { | ||
102 | "cache_last_updated": null, | 102 | "cache_last_updated": null, | ||
103 | "cache_url": null, | 103 | "cache_url": null, | ||
104 | "created": "2023-04-19T03:18:28.966424", | 104 | "created": "2023-04-19T03:18:28.966424", | ||
105 | "datastore_active": true, | 105 | "datastore_active": true, | ||
106 | "description": "20230419_11:18 updated from NTUNHS raccoon, any | 106 | "description": "20230419_11:18 updated from NTUNHS raccoon, any | ||
107 | class", | 107 | class", | ||
108 | "format": "CSV", | 108 | "format": "CSV", | ||
109 | "hash": "", | 109 | "hash": "", | ||
110 | "id": "f77f24b0-490f-493f-9547-ff90ae64618d", | 110 | "id": "f77f24b0-490f-493f-9547-ff90ae64618d", | ||
111 | "last_modified": "2023-04-19T03:18:28.943186", | 111 | "last_modified": "2023-04-19T03:18:28.943186", | ||
112 | "metadata_modified": "2023-04-19T03:29:44.036278", | 112 | "metadata_modified": "2023-04-19T03:29:44.036278", | ||
113 | "mimetype": "text/csv", | 113 | "mimetype": "text/csv", | ||
114 | "mimetype_inner": null, | 114 | "mimetype_inner": null, | ||
115 | "name": "ihd-ct_[type]_any", | 115 | "name": "ihd-ct_[type]_any", | ||
116 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 116 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
117 | "position": 2, | 117 | "position": 2, | ||
118 | "resource_type": null, | 118 | "resource_type": null, | ||
119 | "size": 283123, | 119 | "size": 283123, | ||
120 | "state": "active", | 120 | "state": "active", | ||
121 | "url": | 121 | "url": | ||
122 | 7905c/resource/f77f24b0-490f-493f-9547-ff90ae64618d/download/any.csv", | 122 | 7905c/resource/f77f24b0-490f-493f-9547-ff90ae64618d/download/any.csv", | ||
123 | "url_type": "upload" | 123 | "url_type": "upload" | ||
124 | }, | 124 | }, | ||
125 | { | 125 | { | ||
126 | "cache_last_updated": null, | 126 | "cache_last_updated": null, | ||
127 | "cache_url": null, | 127 | "cache_url": null, | ||
128 | "created": "2023-04-19T03:19:07.910334", | 128 | "created": "2023-04-19T03:19:07.910334", | ||
129 | "datastore_active": false, | 129 | "datastore_active": false, | ||
130 | "description": "20230419_11:18 updated from NTUNHS raccoon, | 130 | "description": "20230419_11:18 updated from NTUNHS raccoon, | ||
131 | epidural class", | 131 | epidural class", | ||
132 | "format": "CSV", | 132 | "format": "CSV", | ||
133 | "hash": "", | 133 | "hash": "", | ||
134 | "id": "d7cc0f81-efe4-4024-9784-5ad61f85bf66", | 134 | "id": "d7cc0f81-efe4-4024-9784-5ad61f85bf66", | ||
135 | "last_modified": "2023-04-19T03:19:07.888834", | 135 | "last_modified": "2023-04-19T03:19:07.888834", | ||
136 | "metadata_modified": "2023-04-19T03:27:35.914687", | 136 | "metadata_modified": "2023-04-19T03:27:35.914687", | ||
137 | "mimetype": "text/csv", | 137 | "mimetype": "text/csv", | ||
138 | "mimetype_inner": null, | 138 | "mimetype_inner": null, | ||
139 | "name": "ihd-ct_[type]_epidural", | 139 | "name": "ihd-ct_[type]_epidural", | ||
140 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 140 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
141 | "position": 3, | 141 | "position": 3, | ||
142 | "resource_type": null, | 142 | "resource_type": null, | ||
143 | "size": 288123, | 143 | "size": 288123, | ||
144 | "state": "active", | 144 | "state": "active", | ||
145 | "url": | 145 | "url": | ||
146 | /resource/d7cc0f81-efe4-4024-9784-5ad61f85bf66/download/epidural.csv", | 146 | /resource/d7cc0f81-efe4-4024-9784-5ad61f85bf66/download/epidural.csv", | ||
147 | "url_type": "upload" | 147 | "url_type": "upload" | ||
148 | }, | 148 | }, | ||
149 | { | 149 | { | ||
150 | "cache_last_updated": null, | 150 | "cache_last_updated": null, | ||
151 | "cache_url": null, | 151 | "cache_url": null, | ||
152 | "created": "2023-04-19T03:24:24.484903", | 152 | "created": "2023-04-19T03:24:24.484903", | ||
153 | "datastore_active": false, | 153 | "datastore_active": false, | ||
154 | "description": "20230419_11:18 updated from NTUNHS raccoon, | 154 | "description": "20230419_11:18 updated from NTUNHS raccoon, | ||
155 | intraparenchymal type", | 155 | intraparenchymal type", | ||
156 | "format": "CSV", | 156 | "format": "CSV", | ||
157 | "hash": "", | 157 | "hash": "", | ||
158 | "id": "90ff24d8-6d3d-4ed5-9cbf-faf7c209bf22", | 158 | "id": "90ff24d8-6d3d-4ed5-9cbf-faf7c209bf22", | ||
159 | "last_modified": "2023-04-19T03:24:24.435735", | 159 | "last_modified": "2023-04-19T03:24:24.435735", | ||
160 | "metadata_modified": "2023-04-19T03:25:31.515424", | 160 | "metadata_modified": "2023-04-19T03:25:31.515424", | ||
161 | "mimetype": "text/csv", | 161 | "mimetype": "text/csv", | ||
162 | "mimetype_inner": null, | 162 | "mimetype_inner": null, | ||
163 | "name": "ihd-ct_[type]_intraparenchymal", | 163 | "name": "ihd-ct_[type]_intraparenchymal", | ||
164 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 164 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
165 | "position": 4, | 165 | "position": 4, | ||
166 | "resource_type": null, | 166 | "resource_type": null, | ||
167 | "size": 292123, | 167 | "size": 292123, | ||
168 | "state": "active", | 168 | "state": "active", | ||
169 | "url": | 169 | "url": | ||
170 | e/90ff24d8-6d3d-4ed5-9cbf-faf7c209bf22/download/intraparenchymal.csv", | 170 | e/90ff24d8-6d3d-4ed5-9cbf-faf7c209bf22/download/intraparenchymal.csv", | ||
171 | "url_type": "upload" | 171 | "url_type": "upload" | ||
172 | }, | 172 | }, | ||
173 | { | 173 | { | ||
174 | "cache_last_updated": null, | 174 | "cache_last_updated": null, | ||
175 | "cache_url": null, | 175 | "cache_url": null, | ||
176 | "created": "2023-04-19T03:25:31.523123", | 176 | "created": "2023-04-19T03:25:31.523123", | ||
177 | "datastore_active": true, | 177 | "datastore_active": true, | ||
178 | "description": "20230419_11:18 updated from NTUNHS raccoon, | 178 | "description": "20230419_11:18 updated from NTUNHS raccoon, | ||
179 | intraventricular type", | 179 | intraventricular type", | ||
180 | "format": "CSV", | 180 | "format": "CSV", | ||
181 | "hash": "", | 181 | "hash": "", | ||
182 | "id": "687a597d-954b-4ad4-8761-40d26e9ff236", | 182 | "id": "687a597d-954b-4ad4-8761-40d26e9ff236", | ||
183 | "last_modified": "2023-04-19T03:25:31.499584", | 183 | "last_modified": "2023-04-19T03:25:31.499584", | ||
184 | "metadata_modified": "2023-04-19T03:25:31.515663", | 184 | "metadata_modified": "2023-04-19T03:25:31.515663", | ||
185 | "mimetype": "text/csv", | 185 | "mimetype": "text/csv", | ||
186 | "mimetype_inner": null, | 186 | "mimetype_inner": null, | ||
187 | "name": "ihd-ct_[type]_intraventricular", | 187 | "name": "ihd-ct_[type]_intraventricular", | ||
188 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 188 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
189 | "position": 5, | 189 | "position": 5, | ||
190 | "resource_type": null, | 190 | "resource_type": null, | ||
191 | "size": 296123, | 191 | "size": 296123, | ||
192 | "state": "active", | 192 | "state": "active", | ||
193 | "url": | 193 | "url": | ||
194 | e/687a597d-954b-4ad4-8761-40d26e9ff236/download/intraventricular.csv", | 194 | e/687a597d-954b-4ad4-8761-40d26e9ff236/download/intraventricular.csv", | ||
195 | "url_type": "upload" | 195 | "url_type": "upload" | ||
196 | }, | 196 | }, | ||
197 | { | 197 | { | ||
198 | "cache_last_updated": null, | 198 | "cache_last_updated": null, | ||
199 | "cache_url": null, | 199 | "cache_url": null, | ||
200 | "created": "2023-04-19T03:26:44.944773", | 200 | "created": "2023-04-19T03:26:44.944773", | ||
201 | "datastore_active": true, | 201 | "datastore_active": true, | ||
202 | "description": "20230419_11:18 updated from NTUNHS raccoon, | 202 | "description": "20230419_11:18 updated from NTUNHS raccoon, | ||
203 | subarachnoid type", | 203 | subarachnoid type", | ||
204 | "format": "CSV", | 204 | "format": "CSV", | ||
205 | "hash": "", | 205 | "hash": "", | ||
206 | "id": "52746cf9-04de-46b1-8ce1-43536fe60dae", | 206 | "id": "52746cf9-04de-46b1-8ce1-43536fe60dae", | ||
207 | "last_modified": "2023-04-19T03:26:44.925321", | 207 | "last_modified": "2023-04-19T03:26:44.925321", | ||
208 | "metadata_modified": "2023-04-19T03:26:44.938524", | 208 | "metadata_modified": "2023-04-19T03:26:44.938524", | ||
209 | "mimetype": "text/csv", | 209 | "mimetype": "text/csv", | ||
210 | "mimetype_inner": null, | 210 | "mimetype_inner": null, | ||
211 | "name": "ihd-ct_[type]_subarachnoid", | 211 | "name": "ihd-ct_[type]_subarachnoid", | ||
212 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 212 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
213 | "position": 6, | 213 | "position": 6, | ||
214 | "resource_type": null, | 214 | "resource_type": null, | ||
215 | "size": 292123, | 215 | "size": 292123, | ||
216 | "state": "active", | 216 | "state": "active", | ||
217 | "url": | 217 | "url": | ||
218 | ource/52746cf9-04de-46b1-8ce1-43536fe60dae/download/subarachnoid.csv", | 218 | ource/52746cf9-04de-46b1-8ce1-43536fe60dae/download/subarachnoid.csv", | ||
219 | "url_type": "upload" | 219 | "url_type": "upload" | ||
220 | }, | 220 | }, | ||
221 | { | 221 | { | ||
222 | "cache_last_updated": null, | 222 | "cache_last_updated": null, | ||
223 | "cache_url": null, | 223 | "cache_url": null, | ||
224 | "created": "2023-04-19T03:27:12.659647", | 224 | "created": "2023-04-19T03:27:12.659647", | ||
225 | "datastore_active": false, | 225 | "datastore_active": false, | ||
226 | "description": "20230419_11:18 updated from NTUNHS raccoon, | 226 | "description": "20230419_11:18 updated from NTUNHS raccoon, | ||
227 | subdural type\r\n\r\n", | 227 | subdural type\r\n\r\n", | ||
228 | "format": "CSV", | 228 | "format": "CSV", | ||
229 | "hash": "", | 229 | "hash": "", | ||
230 | "id": "b910a883-f6f3-48b5-9677-cc042f37e4ec", | 230 | "id": "b910a883-f6f3-48b5-9677-cc042f37e4ec", | ||
231 | "last_modified": "2023-04-19T03:27:12.624215", | 231 | "last_modified": "2023-04-19T03:27:12.624215", | ||
232 | "metadata_modified": "2023-04-19T03:27:35.915093", | 232 | "metadata_modified": "2023-04-19T03:27:35.915093", | ||
233 | "mimetype": "text/csv", | 233 | "mimetype": "text/csv", | ||
234 | "mimetype_inner": null, | 234 | "mimetype_inner": null, | ||
235 | "name": "ihd-ct_[type]_subdural", | 235 | "name": "ihd-ct_[type]_subdural", | ||
236 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 236 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
237 | "position": 7, | 237 | "position": 7, | ||
238 | "resource_type": null, | 238 | "resource_type": null, | ||
239 | "size": 288123, | 239 | "size": 288123, | ||
240 | "state": "active", | 240 | "state": "active", | ||
241 | "url": | 241 | "url": | ||
242 | /resource/b910a883-f6f3-48b5-9677-cc042f37e4ec/download/subdural.csv", | 242 | /resource/b910a883-f6f3-48b5-9677-cc042f37e4ec/download/subdural.csv", | ||
243 | "url_type": "upload" | 243 | "url_type": "upload" | ||
244 | }, | 244 | }, | ||
245 | { | 245 | { | ||
246 | "cache_last_updated": null, | 246 | "cache_last_updated": null, | ||
247 | "cache_url": null, | 247 | "cache_url": null, | ||
248 | "created": "2023-12-12T06:11:30.258309", | 248 | "created": "2023-12-12T06:11:30.258309", | ||
249 | "datastore_active": false, | 249 | "datastore_active": false, | ||
250 | "description": "This dataset was a part of the RSNA 2019 | 250 | "description": "This dataset was a part of the RSNA 2019 | ||
251 | Challenge and contains an equal number of brain CT sections (i.e., | 251 | Challenge and contains an equal number of brain CT sections (i.e., | ||
252 | 1000 images) for each label.", | 252 | 1000 images) for each label.", | ||
253 | "format": "DICOM", | 253 | "format": "DICOM", | ||
254 | "hash": "", | 254 | "hash": "", | ||
255 | "id": "19b5164e-5902-4853-bd77-4892b7c1865b", | 255 | "id": "19b5164e-5902-4853-bd77-4892b7c1865b", | ||
256 | "last_modified": null, | 256 | "last_modified": null, | ||
257 | "metadata_modified": "2023-12-12T06:11:30.227391", | 257 | "metadata_modified": "2023-12-12T06:11:30.227391", | ||
258 | "mimetype": null, | 258 | "mimetype": null, | ||
259 | "mimetype_inner": null, | 259 | "mimetype_inner": null, | ||
260 | "name": "Brain CT Hemorrhage Dataset", | 260 | "name": "Brain CT Hemorrhage Dataset", | ||
261 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | 261 | "package_id": "4474dd3c-fdb0-4749-a163-8ffbced7905c", | ||
262 | "position": 8, | 262 | "position": 8, | ||
263 | "resource_type": null, | 263 | "resource_type": null, | ||
264 | "size": null, | 264 | "size": null, | ||
265 | "state": "active", | 265 | "state": "active", | ||
266 | "url": | 266 | "url": | ||
267 | HhFNgDS4dxPuHaLQAuUCPPO/1VqPQ_8sJc1fzB8mdBDzypUcO7YtG-GN-prqgXlDC-Ao", | 267 | HhFNgDS4dxPuHaLQAuUCPPO/1VqPQ_8sJc1fzB8mdBDzypUcO7YtG-GN-prqgXlDC-Ao", | ||
268 | "url_type": null | 268 | "url_type": null | ||
269 | } | 269 | } | ||
270 | ], | 270 | ], | ||
271 | "state": "active", | 271 | "state": "active", | ||
272 | "tags": [ | 272 | "tags": [ | ||
273 | { | 273 | { | ||
274 | "display_name": "CT", | 274 | "display_name": "CT", | ||
275 | "id": "722257de-6d00-4834-8145-7ff0739b1c16", | 275 | "id": "722257de-6d00-4834-8145-7ff0739b1c16", | ||
276 | "name": "CT", | 276 | "name": "CT", | ||
277 | "state": "active", | 277 | "state": "active", | ||
278 | "vocabulary_id": null | 278 | "vocabulary_id": null | ||
279 | }, | 279 | }, | ||
280 | { | 280 | { | ||
281 | "display_name": "brain", | 281 | "display_name": "brain", | ||
282 | "id": "7828821f-c0ef-4377-98c3-4261eee91cf1", | 282 | "id": "7828821f-c0ef-4377-98c3-4261eee91cf1", | ||
283 | "name": "brain", | 283 | "name": "brain", | ||
284 | "state": "active", | 284 | "state": "active", | ||
285 | "vocabulary_id": null | 285 | "vocabulary_id": null | ||
286 | }, | 286 | }, | ||
287 | { | 287 | { | ||
288 | "display_name": "brain image", | 288 | "display_name": "brain image", | ||
289 | "id": "e6e4b86c-3c9b-43a8-9482-f9d6818cbd5d", | 289 | "id": "e6e4b86c-3c9b-43a8-9482-f9d6818cbd5d", | ||
290 | "name": "brain image", | 290 | "name": "brain image", | ||
291 | "state": "active", | 291 | "state": "active", | ||
292 | "vocabulary_id": null | 292 | "vocabulary_id": null | ||
293 | }, | 293 | }, | ||
294 | { | 294 | { | ||
295 | "display_name": "hemorrhage", | 295 | "display_name": "hemorrhage", | ||
296 | "id": "e85c1f20-b932-4468-b100-c6c3dec893da", | 296 | "id": "e85c1f20-b932-4468-b100-c6c3dec893da", | ||
297 | "name": "hemorrhage", | 297 | "name": "hemorrhage", | ||
298 | "state": "active", | 298 | "state": "active", | ||
299 | "vocabulary_id": null | 299 | "vocabulary_id": null | ||
300 | } | 300 | } | ||
301 | ], | 301 | ], | ||
302 | "title": "Brain CT Hemorrhage Public Dataset", | 302 | "title": "Brain CT Hemorrhage Public Dataset", | ||
303 | "type": "dataset", | 303 | "type": "dataset", | ||
304 | "url": "", | 304 | "url": "", | ||
305 | "version": "" | 305 | "version": "" | ||
306 | } | 306 | } |